For a SensMLP Class object, change the significance level of the statistical tests
Arguments
- x
SensMLP
object created bySensAnalysisMLP
- boot.alpha
float
significance level
Examples
# \donttest{
## Load data -------------------------------------------------------------------
data("DAILY_DEMAND_TR")
fdata <- DAILY_DEMAND_TR
## Parameters of the NNET ------------------------------------------------------
hidden_neurons <- 5
iters <- 250
decay <- 0.1
################################################################################
######################### REGRESSION NNET #####################################
################################################################################
## Regression dataframe --------------------------------------------------------
# Scale the data
fdata.Reg.tr <- fdata[,2:ncol(fdata)]
fdata.Reg.tr[,3] <- fdata.Reg.tr[,3]/10
fdata.Reg.tr[,1] <- fdata.Reg.tr[,1]/1000
## TRAIN nnet NNET --------------------------------------------------------
set.seed(150)
nnetmod <- caret::train(DEM ~ .,
data = fdata.Reg.tr,
method = "nnet",
tuneGrid = expand.grid(size = c(1), decay = c(0.01)),
trControl = caret::trainControl(method="none"),
preProcess = c('center', 'scale'),
linout = FALSE,
trace = FALSE,
maxit = 300)
# Try SensAnalysisMLP
sens <- NeuralSens::SensAnalysisMLP(nnetmod, trData = fdata.Reg.tr,
plot = FALSE, boot.R=2, output_name='DEM')
#> # Calculating bootstrap sensitivity measures
#>
|
| | 0%
|
|=================================== | 50%
|
|======================================================================| 100%
NeuralSens::ChangeBootAlpha(sens, boot.alpha=0.1)
#> Sensitivity analysis of 2-1-1 MLP network.
#>
#> 1980 samples
#>
#> Sensitivities of each output (only 5 first samples):
#> $DEM
#> WD TEMP
#> [1,] 0.1657809 -0.06765913
#> [2,] 0.3102340 -0.12661386
#> [3,] 0.3185984 -0.13002759
#> [4,] 0.3180175 -0.12979052
#> [5,] 0.3204461 -0.13078166
# }