Plot of sensitivity of the neural network output respect to the inputs over the time variable from the data provided
Arguments
- object
SensMLP
object generated bySensAnalysisMLP
with several outputs (classification MLP)- comb_type
Function to combine the matrixes of the
raw_sens
component ofobject
. It can be "mean", "median" or "sqmean". It can also be a function to combine the rows of the matrixes
Examples
# \donttest{
fdata <- iris
## Parameters of the NNET ------------------------------------------------------
hidden_neurons <- 5
iters <- 250
decay <- 0.1
#' ## TRAIN nnet NNET --------------------------------------------------------
# Create a formula to train NNET
form <- paste(names(fdata)[1:ncol(fdata)-1], collapse = " + ")
form <- formula(paste(names(fdata)[5], form, sep = " ~ "))
set.seed(150)
mod <- nnet::nnet(form,
data = fdata,
linear.output = TRUE,
size = hidden_neurons,
decay = decay,
maxit = iters)
#> # weights: 43
#> initial value 202.395197
#> iter 10 value 89.434352
#> iter 20 value 69.265889
#> iter 30 value 30.753230
#> iter 40 value 23.999431
#> iter 50 value 23.111929
#> iter 60 value 23.041209
#> iter 70 value 23.013926
#> iter 80 value 23.007422
#> final value 23.007413
#> converged
# mod should be a neural network classification model
sens <- SensAnalysisMLP(mod, trData = fdata, output_name = 'Species')
#> Loading required namespace: ggforce
#> Warning: All aesthetics have length 1, but the data has 4 rows.
#> ℹ Did you mean to use `annotate()`?
#> Warning: minimum occurred at one end of the range
#> Warning: minimum occurred at one end of the range
#> Warning: minimum occurred at one end of the range
#> Warning: minimum occurred at one end of the range
combinesens <- CombineSens(sens, "sqmean")
# }